品质至上,客户至上,您的满意就是我们的目标
当前位置: 首页 > 新闻动态
欧洲科学家做利用高通量表型系统研究植物胁迫的文章
发表时间: 点击:782
来自欧洲的科学家,利用Phenovision高通量植物表型成像系统(SMO构建)发表了题为Analysis of Plant Stress Response Using Hyperspectral Imaging and Kernel Ridge Regression的文章,文章发表于Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applicationspp 426-431
WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以较优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植 物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。
SMO是欧洲先进的机械设备制造与设计工程公司,是一家将大规模自动化理念和工业级零件和设备整合入 植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲先进客户提供机械设计 解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质 配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有较为强大的工程师 团队,基于工业领域的丰富经验,可针对不同客户需求,提供复杂表型成像系统的解决方案。目前 WIWAM植物表型平台分为WIWAM XY,WIWAM Line、WIWAM Conveyor、WIWAM mobiles、WIWAM Box等几个系列,同时还提供提供野外表型成像系统设计方案。
摘要
植物的光学特征是预测植被含水量的重要工具,用于定量评估干旱胁迫下的植物状态。植物对水分胁迫的反应可能涉及光学上复杂的反应,因此需要更复杂的学习算法来准确预测。本研究提出了核岭回归(KRR)算法,这是一种简单而有效的非线性学习方法,可以揭示响应变量与输入谱之间的复杂关系。通过校准短波红外归一化光谱(SWIR)和叶片相对含水量(RWC)值,建立了预测模型。将预测模型应用于玉米植株的高光谱图像(HSI)时间序列,用于干旱胁迫的早期检测。对每一个植物像素进行RWC估计,并构造直方图来表征整个植物。通过直方图相似性度量实现了健康植物和受胁迫植物之间的区分。此外,采用单向方差分析(ANOVA)来检验健康植物和受胁迫植物之间差异的显著性。该方法从干旱诱导的第五天就成功地检测到了干旱胁迫,证实了HSI在干旱胁迫检测研究中的潜力。
关键词:干旱胁迫,高光谱成像,相对含水量,核岭回归直方图距离
Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications pp 426-431
Analysis of Plant Stress Response Using Hyperspectral Imaging and Kernel Ridge Regression
Mohd Shahrimie Mohd Asaari,Stien Mertens,Stijn Dhondt,Dirk Inzé,Paul Scheunders
Abstract
The optical signature of a plant is an essential tool in predicting vegetation water content for quantitative assessment of plant status under drought stress. Plant responses to water stress may involve optically-complex reactions, thus a more sophisticated learning algorithm is needed for accurate prediction. This study proposes Kernel Ridge Regression (KRR) algorithm, a simple yet effective nonlinear learning method to uncover the complex relationship between the response variable and input spectra. A prediction model was developed by calibrating the normalized spectral in Short-Wave-Infrared (SWIR) with the leaf Relative Water Content (RWC) values. The predicted model was applied to a time-series of Hyperspectral images (HSI) of maize plants for early detection of drought stress. RWC was estimated for every plant pixel, and the histogram representation was constructed to characterize the whole plant. Discrimination between healthy and stressed plants was achieved by means of the histogram similarity measure. Further, a OneWay Analysis of Variance (ANOVA) was applied to test the significance of the discrimination between healthy and stressed plants. The proposed method successfully detected drought stress from the fifth day of drought induction, confirming the potential of HSI for drought stress detection studies.
Keywords
Drought stress Hyperspectral imaging Relative water content Kernel ridge regression Histogram distance