科学家利用Videometer多光谱成像系统发表咖啡研究文章



欧亚国际

欢迎您来到欧亚国际科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

当前位置:  首页 > 新闻动态

科学家利用Videometer多光谱成像系统发表咖啡研究文章

发表时间: 点击:748

来源:北京欧亚国际科技有限公司

分享:

来自巴西的科学家,利用Videometer多光谱成像系统在期刊Computers and Electronics in Agriculture 发表了题为“Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee”的文章。目前利用Videometer多光谱成像系统发表的文章已经接近400篇。

多光谱成像结合机器学习模型在鉴别特制咖啡和传统咖啡中的应用

DOI:10.1016/j.compag.2022.107097

项目:种子质量无损评价方法 

摘要 

由机器学习模型辅助的无损检测技术在食品分析中得到了广泛应用。为了区分“特殊”和“传统”类别的绿色咖啡豆,结合四种机器学习算法(SVM、RF、XGBoost和CatBoost),采用了基于反射率和自荧光数据的高级多光谱成像技术。在这四种算法中,SVM对测试数据集显示出较高的精度(0.96)。使用PCA和SVM算法进行的分析表明,405/500 nm激发/发射组合的自荧光数据对区分特种绿咖啡和传统咖啡的贡献最大。与绿色荧光相关的荧光物质,即儿茶素、咖啡因和4-羟基苯甲酸、突触酸和绿原酸,发现其对特制咖啡和传统咖啡的分化有相当大的影响。基于多光谱自荧光成像和SVM模型的分析被证明是一种有价值的工具,可用于未来食品行业对特殊和传统绿咖啡进行无损实时分类。 

Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee

June 2022

Computers and Electronics in Agriculture 198(12):107097

DOI:10.1016/j.compag.2022.107097

Project: Non-destructive methods for seed quality evalsuation 

Abstract

Non-destructive techniques aided by machine learning models are widely implemented in food analysis. To discriminate between 'special' and 'traditional' classes of green coffee beans, an advanced multispectral imaging technique based on reflectance and autofluorescence data was employed in combination with four machine learning algorithms (SVM, RF, XGBoost, and CatBoost). Of the four algorithms, SVM showed superior accuracy (0.96) for the test dataset. Analysis using PCA and SVM algorithms showed that autofluorescence data from excitation/emission combination of 405/500 nm contributed most to the discrimination of special green coffee from the traditional class. Fluorophores that can be linked to green fluorescence, namely catechin, caffeine and 4-hydroxybenzoic, synapic and chlorogenic acids, were found to have a considerable influence on the differentiation of specialty and traditional coffees. Analysis based on multispectral autofluorescence imaging combined with SVM models was proven to be a valuable tool for future applications in the food industry for the non-destructive and real-time classification of special and traditional green coffee.

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报
欧亚国际