利用Videometer多光谱成像系统发表大豆萌发的文章

欧亚国际

欢迎您来到欧亚国际科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

利用Videometer多光谱成像系统发表大豆萌发的文章

发表时间:2021-08-06 13:06:51点击:907

来源:北京欧亚国际科技有限公司

分享:

来自法国的科学家利用Videometer多光谱成像系统,在作物学报(The Crop Journal)上发表了题为Multichannel imaging for monitoring chemical composition and germination capacity of cowpea (Vigna unguiculata) seeds during development and maturation的文章。欧亚国际科技是丹麦Videometer公司系列光谱成像设备的中国区总代理,负责其系列产品在中国市场的推广、销售和售后服务。

image.png

image.png 

image.png 

image.png

Multichannel imaging for monitoring chemical composition and germination capacity of cowpea (Vigna unguiculata) seeds during development and maturation

Abstract

This study aimed to set a computer-integrated multichannel spectral imaging system as a high-throughput phenotyping tool for the analysis of individual cowpea seeds harvested at different developmental stages. The changes in germination capacity and variations in moisture, protein and different sugars during twelve stages of seed development from 10 to 32 days after anthesis were non-destructively monitored. Multispectral data at 20 discrete wavelengths in the ultraviolet, visible and near infrared regions were extracted from individual seeds and then modelled using partial least squares regression and linear discriminant analysis (LDA) models. The developed multivariate models were accurate enough for monitoring all possible changes occurred in moisture, protein and sugar contents with coefficients of determination in prediction Rp2 of 0.93, 0.80 and 0.78 and root mean square errors in prediction (RMSEP) of 6.045%, 2.236% and 0.890%, respectively. The accuracy of PLS models in predicting individual sugars such as verbascose and stachyose was reasonable with Rp2 of 0.87 and 0.87 and RMSEP of 0.071% and 0.485%, respectively; but for the prediction of sucrose and raffinose the accuracy was relatively limited with Rp2 of 0.24 and 0.66 and RMSEP of 0.567% and 0.045%, respectively. The developed LDA model was robust in classifying the seeds based on their germination capacity with overall correct classification of 96.33% and 95.67% in the training and validation datasets, respectively. With these levels of accuracy, the proposed multichannel spectral imaging system designed for single seeds could be an effective choice as a rapid screening and non-destructive technique for identifying the ideal harvesting time of cowpea seeds based on their chemical composition and germination capacity. Moreover, the development of chemical images of the major constituents along with classification images confirmed the usefulness of the proposed technique as a non-destructive tool for estimating the concentrations and spatial distributions of moisture, protein and sugars during different developmental stages of cowpea seeds.

Keywords

Multispectral imaging,Multichannel imaging,Chemical imaging,Spectral analysis,Seeds,Cowpea

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报
欧亚国际