植物全植株功能生理表型分析系统-Plantarray系统

欧亚国际

欢迎您来到欧亚国际科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

植物全植株功能生理表型分析系统-Plantarray系统

发表时间:2022-03-24 10:37:22点击:1308

来源:北京欧亚国际科技有限公司

分享:

Plantarray是一个全自动、基于多传感器重量分析的平台,可直接测量生理特性,科学家、育种人员和研究人员可以快速、轻松地对整个植物进行同步性能分析。

1648089180924685.png

该系统测量植物蒸腾作用、生物量积累、水分和养分利用效率、关键生理特性、活性和环境,以得出植物在各种环境条件下的生产力。仅几周内,该系统就可深入了解植物与环境的相互作用,并有效地选择有助于提高产量和应对胁迫的正确植物和条件。

1648089201753106.png

主要好处

智能工厂环境筛选与诊断

全自动,免提

生理学概况

整株、根、芽和环境

通过实时测量加速研究

独特的基于反馈的灌溉和施肥控制

适合大多数植物、土壤类型和生长阶段

干旱胁迫实验和植物恢复力的独特功能

定量、明确、可靠的结果与现场结果高度相关

通过对阵列中所有植物的高分辨率连续、同步测量,加强研究。从而在眼睛或图像能够发现之前识别出植物反应的微小变化 

发现植物性能的潜在秘密 

Plantarray提供了高分辨率、精确且一致的结果。每株植物本身都是一个精确的重复,并接受单独和准确的处理,在整个实验过程中,通过反馈机制保持这种处理。在知道如何视觉识别植物胁迫之前,Plantarray就检测到了植物的反应。从Plantarray系统获得的信息以及对信息进行即时分析的方式会得出有意义的结论。

1648089412364723.png

Plantarray可协助对环境胁迫影响的清晰理解以及在特定生长条件下植物水平发生的变化。

利用Plantarray系统发表的部分文章 

High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions

Jaramillo Roman V. et. al., (2021), Front. Plant Sci. DOI: 10.3389/fpls.2021.634311 


The potential of dynamic physiological traits in young tomato plants to predict field-yield performance

Gosa et. al., (2022), Plant Science DOI: 10.1016/j.plantsci.2021.111122 


Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics systemcontent in lettuce using a dual phenomics system

Shahar Weksler et. al., (2021), Jornal of Experimental Botany DOI: 10.1093/jxb/erab561

 

Functional physiological phenotyping with functional mapping: A general framework to bridge the phenotype-genotype gap in plant physiology

Pandey et. al., (2021), iScience DOI: 10.1016/j.isci.2021.102846

 

Editorial: State-of-the-Art Technology and Applications in Crop PhenomicsEditorial: State-of-the-Art Technology and Applications in Crop Phenomics

Ji Zhou. (2021), Front. Plant Sci. DOI: 10.3389/fpls.2021.767324

 

On the Interpretation of Four Point Impedance Spectroscopy of Plant Dehydration Monitoring

Yosi Shacham-Diamand. (2021), IEEE. DOI: 10.1109/JETCAS.2021.3098984

 

Modify Root/Shoot ratio Alleviate Root Water Influxes in Wheat under Drought Stress

Bacher et. al., (2021), Journal of Experimental Botany DOI: 10.1093/jxb/erab500

 

Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’ responses in tomato

Shohat et. al., (2021), New Phytologist. DOI: 10.1111/nph.17709

 

Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and GWAS in Cowpea

Xinyi Wu et. al., (2021), Front. Genet. DOI: 10.3389/fgene.2021.743758

 

Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought

Shteinberg et. al., (2021), Cells DOI: 10.3390/cells10112875

 

High-Throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants

Yanwei Li et. al., (2021), Horticultural Plant Journal DOI: 10.1016/j.hpj.2020.09.004

 

Pepper Plants Leaf Spectral Reflectance Changes as a Result of Root Rot Damage

S. Weksler et. al. (2021), Remote Sens. DOI: 10.3390/rs13050980

 

Detection of Potassium Deficiency and Momentary Transpiration Rate Estimation at Early Growth Stages Using Proximal Hyperspectral Imaging and Extreme Gradient Boosting

S. Weksler et. al. (2021), Sensors DOI: 10.3390/s21030958

 

The dichotomy of yield and drought resistance; Translation challenges from basic research to crop adaptation to climate change

Menachem Moshelion (2020), EMBO Rep DOI: 10.15252/embr.202051598

 

A Telemetric, Gravimetric Platform for Real-Time Physiological Phenotyping of Plant–Environment Interactions

Dalal et. al. (2020), JoVE DOI: 10.3791/61280

 

A Hyperspectral-Physiological Phenomics System: Measuring Diurnal Transpiration Rates and Diurnal Reflectance

S. Weksler et. al. (2020), Remote Sens. DOI:10.3390/rs12091493

 

Mutations in the Tomato Gibberellin Receptors Suppress Xylem Proliferation and Reduce Water Loss Under Water-Deficit Conditions

S. Weksler et. al. (2020), Journal of Experimental Botany. DOI:10.3390/rs12091493

 

Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments

 

Illouz-Eliaz et. al. (2019), Plant Cell DOI:10.1193/jxb/eraa137

A High-Throughput Physiological Functional Phenotyping System for Time- and Cost-Effective Screening of Potential Biosestimulants

 

Ahan Dalal et. al., (2019) PBioRxiv DOI: 10.1101/525592

Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated With “Productivity-Enhancing” and “Survivability-Enhancing” Biosestimulants

 

Dalal et. al. (2019) Front. Plant Sci. DOI:10.3389/fpls.2019.00905

Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response

 

A. Yaaran et. al., (2019) Plant Science DOI:10.1016/j.plantsci.2018.12.027

Risk-management strategies and transpiration rates of wild barley in uncertain environments

 

Galkin et. al. (2018) Physiologia Plantarum DOI:10.1111/ppl.12814

Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support prebreeding and plant stress physiology studies

 

Gosa, S.C. et. al., (2019) Plant Science DOI:10.1016/j.plantsci.2018.05.008

The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure

 

Nir et. Al., (2017) Plant Cell DOI:10.1105/tpc.17.00542

Transcriptome analysis of Pinus halepensis under drought stress and during recovery

Fox et. Al., (2017) Tree Physiology DOI:10.1093/treephys/tpx137

 

A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought

Aidoo et. al., (2017) Metabolomics DOI:10.1007s11306-017-1267-y

 

High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions

Halperin et. Al., (2016) The Plant Journal 10.1111/tpj.13425

 

Cytokinin activity increases stomatal density and transpiration rate in tomato

Farber et. Al., (2016) Journal of Experimental Botany DOI: 10.1093/jxb/erw398

The advantages of functional phenotyping in pre-field screening for drought-tolerant crops

Negin et. al., (2016)  Functional Plant Biology  DOI: 10.1071/FP16156

 

Current challenges and future perspectives of plant and agricultural biotechnology

Moshelion and Altman, (2015) Trends in Biotechnology. 33, 337–342

 

Growth and physiological responses of isohydric and anisohydric poplars to drought

Ziv Attia et al., (2015) Journal of Experimental Botany doi10.1093jxberv195

 

Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration

Lugassi et. al., (2015) Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.

 

Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought

Xu et. al., (2015) Frontiers in plant sciences DOI: 10.3389/fpls.2015.00891

 

Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour

Tracy Lawson et. al., (2014) New Phytologist DOI: 10.1111nph.12945

 

Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts

Bedada et. al., (2014) BMC Genomics DOI: 10.11861471-2164-15-995

 

Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

Moshelion  et. al., (2014) Plant Cell & Environment DOI: 10.1111/pce.12410

 

Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth

Kelly et. al.,  (2014) PLoS One. 9 : DOI:10.1371/ journal.pone.0087888

 

The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.

Nir et. al., (2013) Plant cell and Environment 37, 113–123

 

Hexokinase mediates stomatal closure

Kelly et. al.,  (2013) The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258

 

Risk-taking plants: Anisohydric behavior as a stress-resistance trait

Sade et. Al., (2012) Plant Signaling & Behavior DOI org/10.4161/psb.20505

 

Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress

Wallach et. al., (2010) Journal of Experimental Botany 61:3439–3449

The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress

Sade et. al., (2010) Plant Physiology 152:1-10

 

Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion?

Sade et. al., (2009) New Phytologist. 181: 651–661

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报
欧亚国际