品质至上,客户至上,您的满意就是我们的目标
技术文章
当前位置: 首页 > 技术文章
植物全植株功能生理表型分析系统-Plantarray系统
发表时间:2022-03-24 10:37:22点击:1308
Plantarray是一个全自动、基于多传感器重量分析的平台,可直接测量生理特性,科学家、育种人员和研究人员可以快速、轻松地对整个植物进行同步性能分析。
该系统测量植物蒸腾作用、生物量积累、水分和养分利用效率、关键生理特性、活性和环境,以得出植物在各种环境条件下的生产力。仅几周内,该系统就可深入了解植物与环境的相互作用,并有效地选择有助于提高产量和应对胁迫的正确植物和条件。
主要好处
智能工厂环境筛选与诊断
全自动,免提
生理学概况
整株、根、芽和环境
通过实时测量加速研究
独特的基于反馈的灌溉和施肥控制
适合大多数植物、土壤类型和生长阶段
干旱胁迫实验和植物恢复力的独特功能
定量、明确、可靠的结果与现场结果高度相关
通过对阵列中所有植物的高分辨率连续、同步测量,加强研究。从而在眼睛或图像能够发现之前识别出植物反应的微小变化
发现植物性能的潜在秘密
Plantarray提供了高分辨率、精确且一致的结果。每株植物本身都是一个精确的重复,并接受单独和准确的处理,在整个实验过程中,通过反馈机制保持这种处理。在知道如何视觉识别植物胁迫之前,Plantarray就检测到了植物的反应。从Plantarray系统获得的信息以及对信息进行即时分析的方式会得出有意义的结论。
Plantarray可协助对环境胁迫影响的清晰理解以及在特定生长条件下植物水平发生的变化。
利用Plantarray系统发表的部分文章
High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions
Jaramillo Roman V. et. al., (2021), Front. Plant Sci. DOI: 10.3389/fpls.2021.634311
The potential of dynamic physiological traits in young tomato plants to predict field-yield performance
Gosa et. al., (2022), Plant Science DOI: 10.1016/j.plantsci.2021.111122
Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics systemcontent in lettuce using a dual phenomics system
Shahar Weksler et. al., (2021), Jornal of Experimental Botany DOI: 10.1093/jxb/erab561
Functional physiological phenotyping with functional mapping: A general framework to bridge the phenotype-genotype gap in plant physiology
Pandey et. al., (2021), iScience DOI: 10.1016/j.isci.2021.102846
Editorial: State-of-the-Art Technology and Applications in Crop PhenomicsEditorial: State-of-the-Art Technology and Applications in Crop Phenomics
Ji Zhou. (2021), Front. Plant Sci. DOI: 10.3389/fpls.2021.767324
On the Interpretation of Four Point Impedance Spectroscopy of Plant Dehydration Monitoring
Yosi Shacham-Diamand. (2021), IEEE. DOI: 10.1109/JETCAS.2021.3098984
Modify Root/Shoot ratio Alleviate Root Water Influxes in Wheat under Drought Stress
Bacher et. al., (2021), Journal of Experimental Botany DOI: 10.1093/jxb/erab500
Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’ responses in tomato
Shohat et. al., (2021), New Phytologist. DOI: 10.1111/nph.17709
Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and GWAS in Cowpea
Xinyi Wu et. al., (2021), Front. Genet. DOI: 10.3389/fgene.2021.743758
Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought
Shteinberg et. al., (2021), Cells DOI: 10.3390/cells10112875
High-Throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants
Yanwei Li et. al., (2021), Horticultural Plant Journal DOI: 10.1016/j.hpj.2020.09.004
Pepper Plants Leaf Spectral Reflectance Changes as a Result of Root Rot Damage
S. Weksler et. al. (2021), Remote Sens. DOI: 10.3390/rs13050980
Detection of Potassium Deficiency and Momentary Transpiration Rate Estimation at Early Growth Stages Using Proximal Hyperspectral Imaging and Extreme Gradient Boosting
S. Weksler et. al. (2021), Sensors DOI: 10.3390/s21030958
The dichotomy of yield and drought resistance; Translation challenges from basic research to crop adaptation to climate change
Menachem Moshelion (2020), EMBO Rep DOI: 10.15252/embr.202051598
A Telemetric, Gravimetric Platform for Real-Time Physiological Phenotyping of Plant–Environment Interactions
Dalal et. al. (2020), JoVE DOI: 10.3791/61280
A Hyperspectral-Physiological Phenomics System: Measuring Diurnal Transpiration Rates and Diurnal Reflectance
S. Weksler et. al. (2020), Remote Sens. DOI:10.3390/rs12091493
Mutations in the Tomato Gibberellin Receptors Suppress Xylem Proliferation and Reduce Water Loss Under Water-Deficit Conditions
S. Weksler et. al. (2020), Journal of Experimental Botany. DOI:10.3390/rs12091493
Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments
Illouz-Eliaz et. al. (2019), Plant Cell DOI:10.1193/jxb/eraa137
A High-Throughput Physiological Functional Phenotyping System for Time- and Cost-Effective Screening of Potential Biosestimulants
Ahan Dalal et. al., (2019) PBioRxiv DOI: 10.1101/525592
Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated With “Productivity-Enhancing” and “Survivability-Enhancing” Biosestimulants
Dalal et. al. (2019) Front. Plant Sci. DOI:10.3389/fpls.2019.00905
Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response
A. Yaaran et. al., (2019) Plant Science DOI:10.1016/j.plantsci.2018.12.027
Risk-management strategies and transpiration rates of wild barley in uncertain environments
Galkin et. al. (2018) Physiologia Plantarum DOI:10.1111/ppl.12814
Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support prebreeding and plant stress physiology studies
Gosa, S.C. et. al., (2019) Plant Science DOI:10.1016/j.plantsci.2018.05.008
The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure
Nir et. Al., (2017) Plant Cell DOI:10.1105/tpc.17.00542
Transcriptome analysis of Pinus halepensis under drought stress and during recovery
Fox et. Al., (2017) Tree Physiology DOI:10.1093/treephys/tpx137
A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought
Aidoo et. al., (2017) Metabolomics DOI:10.1007s11306-017-1267-y
High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions
Halperin et. Al., (2016) The Plant Journal 10.1111/tpj.13425
Cytokinin activity increases stomatal density and transpiration rate in tomato
Farber et. Al., (2016) Journal of Experimental Botany DOI: 10.1093/jxb/erw398
The advantages of functional phenotyping in pre-field screening for drought-tolerant crops
Negin et. al., (2016) Functional Plant Biology DOI: 10.1071/FP16156
Current challenges and future perspectives of plant and agricultural biotechnology
Moshelion and Altman, (2015) Trends in Biotechnology. 33, 337–342
Growth and physiological responses of isohydric and anisohydric poplars to drought
Ziv Attia et al., (2015) Journal of Experimental Botany doi10.1093jxberv195
Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration
Lugassi et. al., (2015) Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.
Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought
Xu et. al., (2015) Frontiers in plant sciences DOI: 10.3389/fpls.2015.00891
Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour
Tracy Lawson et. al., (2014) New Phytologist DOI: 10.1111nph.12945
Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts
Bedada et. al., (2014) BMC Genomics DOI: 10.11861471-2164-15-995
Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.
Moshelion et. al., (2014) Plant Cell & Environment DOI: 10.1111/pce.12410
Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth
Kelly et. al., (2014) PLoS One. 9 : DOI:10.1371/ journal.pone.0087888
The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.
Nir et. al., (2013) Plant cell and Environment 37, 113–123
Hexokinase mediates stomatal closure
Kelly et. al., (2013) The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258
Risk-taking plants: Anisohydric behavior as a stress-resistance trait
Sade et. Al., (2012) Plant Signaling & Behavior DOI org/10.4161/psb.20505
Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress
Wallach et. al., (2010) Journal of Experimental Botany 61:3439–3449
The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress
Sade et. al., (2010) Plant Physiology 152:1-10
Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion?
Sade et. al., (2009) New Phytologist. 181: 651–661