品质至上,客户至上,您的满意就是我们的目标
技术文章
当前位置: 首页 > 技术文章
多光谱食品品质可视化:基于双道二维相关光谱(2t2d Cos)和多快照可见近红外多光谱成像的牛肉肌肉鉴别新方法
发表时间:2023-02-15 14:50:45点击:667
摘要
本研究的目的是评估可见-近红外多光谱成像结合2T2D COS PLS-DA(双道二维相关光谱和偏最小二乘判别分析)的能力,可见-近红外多光谱成像作为一种快速、无损和准确的方法,根据牛肉的品种来源和肌肉类型对其进行分类。该实验是从三个品种(Aberdeen Angus、Limousine和Blonde d’Aquitaine)获得的三种类型(胸最长肌、半膜肌和股二头肌)的240块肌肉上进行的。在执行PLS-DA之前,肌肉多光谱图像光谱通过SNV(标准正态变量)、MSC(多变量散射校正)或AREA(曲线下面积等于1)进行处理,并通过2T2D COS进行变换,以计算同步和异步2T2D图。研究结果着重指出,在执行PLS-DA之前,结合未预处理的同步和异步2T2D图是获得肌肉之间的高辨别精度(100%的分类精度和0%的误差)和繁殖类(100%的归类精度和0%误差)的最佳策略。
关键词:牛肉、品种、肌肉、鉴别、多光谱成像、2T2D COS、PLS-DA
A New Approach of Beef Muscle Discrimination Based on Two-Trace Two-Dimensional Correlation Spectroscopy (2t2d Cos) Combined with Multi-Snapshot Visible-Near Infrared Multispectral Imaging
Abstract
The aim of this study was to evalsuate the ability of Visible Near infrared multispectral imaging coupled with 2T2D COS PLS-DA (two-trace two-dimensional correlation spectroscopy and partial least squares discriminant analysis) as a rapid, non-destructive, and accurate methodology to classify beef muscles based on their breed origin and muscle type. The experiment was performed on 240 muscles of three types (Longissimus thoracis, Semimembranosus, and Biceps femoris) obtained from three breeds (Aberdeen Angus, Limousine, and Blonde d’Aquitaine). Before performing PLS-DA, the muscle multispectral images spectra were processed by SNV (standard normal variate), MSC (multivariate scattering correction) or AREA (area under curve equal 1) and transformed by 2T2D COS in order to calculate synchronous and asynchronous 2T2D maps. The results of the study highlighted that combining non-preprocessed synchronous and asynchronous 2T2D maps before performing PLS-DA was the best strategy to obtain a high discrimination accuracy between muscles (100% of classification accuracy and 0% of error) and breeds classes (100% of classification accuracy and 0% of error).
Keywords: beef, breed, Muscle, discrimination, Multispectral imaging, 2T2D COS, PLS-DA
Sign and position (in nm) of identified cross-peaks
450 | 470 | 505 | 565 | 590 | 630 | 645 | 660 | 850 | 890 | 910 | 920 | 940 | 950 | |
565 | (+) | |||||||||||||
630 | (+) | (-)(+) | ||||||||||||
645 | (+) | (+) | (+) | |||||||||||
660 | (-) | |||||||||||||
850 | (+)(+) | (+) | (+)(+) | |||||||||||
870 | ||||||||||||||
890 | (-) | (-) | ||||||||||||
900 | ||||||||||||||
910 | (+) | (+) | (+)(-) | (-) | (+) | |||||||||
920 | (+) | (-) | (-) | |||||||||||
940 | (+) | (+) | (+)(-) | (-) | (+) | |||||||||
950 | (-) | (-)(+) | (-) | (-) | (+) | (-) | (-)(-) | (-) | ||||||
970 | (-) | (-) | (-) | (-) | (-) | (-) | (-) |
相关阅读
丹麦VideometerSLS/SGT颗粒/粘度/口感评价测量仪
食品品质光谱成像可视化:光谱成像应用于面食小麦籽粒真伪检测的可行性研究
食品品质光谱成像可视化:多光谱成像 (MSI):一种检测掺有马肉的碎牛肉的有前景的方法
食品品质光谱成像可视化:色度计和多光谱图像的肉类颜色测量结果的比较
食品品质光谱成像可视化:利用多光谱成像进行非侵入性污染评估和肉类样品绘图
食品品质光谱成像可视化:使用多光谱成像分析快速无损识别注水牛肉样品
食品品质光谱成像可视化:具有不同亚硝酸盐和硝酸盐还原酶活性的肉相关葡萄球菌在发酵香肠中的颜色形成
食品品质光谱可视化研究:长时间低温热处理的奶牛和公牛的肉韧性与结缔组织特性的关系
食品品质光谱成像可视化:使用 vis/NIR 多光谱成像对微加工苹果的每日新鲜度衰减:初步测试